论文部分内容阅读
基因影像学现有研究大多只重视脑部感兴趣区域的特征提取,而针对脑区与脑区之间相互关联这种连接性特征的研究工作相对较少.最近的研究显示使用结构化的网络模型量化脑区之间的复杂连接可以更好地反映大脑的综合特性.因此,文中提出基于超网络的稀疏多任务典型相关分析算法.首先使用稀疏表示的方法从功能核磁共振图像(fMRI)的时间序列中建立超网络,然后从超网络中提取3种聚类系数作为脑影像特征,最后采用稀疏多任务典型相关分析求得基因与3种影像特征之间的关联.在ADNI数据集上的实验证明文中算法不仅有助于提高基因与影像之间关联