论文部分内容阅读
随着科技的发展以及信息化时代的到来,网络数据已由单一性向着复杂性、全面性转变,在大量冗余信息中提炼出有用数据,并进行精准推荐,解决信息过载问题是研究的重点。传统的协同过滤算法,通过研究相似用户的兴趣偏好进行相似性计算,忽略了时间因素以及项目属性对用户的影响,进而造成数据的稀疏性;且当引入新项目时无法及时的进行推荐,导致冷启动问题的产生,可扩展性不足。针对这种情况在已有过滤算法的模型上,引入新的相似性度量方法,将项目属性与用户评分信息进行融合并加入自适应平衡因子,对项目的相似性进行综合评判,进而实现精准推荐