2005年高考数学福建卷理科第12题商榷的再商榷

来源 :中学数学教学参考 | 被引量 : 0次 | 上传用户:w359624042
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
2005年普通高等学校招生全国统一考试数学福建卷理科第12题题目如下:f(x)是定义在 R 上的以3为周期的奇函数,且 f(2)=0,则方程在区间(0,6)内解的个数的最小值为().A.2 B.3 C.4 D.5有关解答(记为解法1):依题可知 f(x)=f(x+3),所以 f(2)=f(5)=0.又因为 f(x)是定义在 R 上的奇函数,所以f(-x)=-f(x),所以 f(-2)=-f(2)=0,所以f(-2)=f(1)=f(4)=0.又因为奇函数有 f(0)=0,所以 f(2)=f(6)=0. In 2005, the college entrance examination of the National Unification Examination of Mathematics Fujian Science Section 12 questions are as follows: f (x) is an odd function defined in R as 3 cycles, and f (2) = 0, the equation in the interval 0,6), the minimum number of solutions is () .A.2 B.3 C.4 D.5 The solution (denoted as solution 1): According to the problem we can see that f (x) = f (x + 3 So f (2) = f (5) = 0. Since f (x) is an odd function defined on R, f (-x) = - f f (2) = f (1) = f (4) = 0 because f (0) = 0 for the odd function, so f (2) = f 0.
其他文献