论文部分内容阅读
传统人工神经网络模型采用试探的方法确定合适的网络结构,并随机地初始化参数值,导致神经网络训练效率低、结果不稳定.熵网络是一种建立在决策树之上的3层前馈网络,在熵网络基础上,提出了基于决策树的神经网络设计方法(DTBNN).DTBNN中提供了对神经网络参数的初始值合理设置的方法,并提出了由决策树确定的只是熵网络的初始结构,在实际的网络构造中需要根据实际应用添加神经元和连接权以提高网络的性能.理论分析和实验结果表明了这种方法的合理性.