论文部分内容阅读
卷积神经网络作为深度学习的重要代表算法之一,被应用到人脸识别、行为识别、字符识别和图像处理等多个领域,推动着人工智能的快速发展.本文在分析整理大量文献后,总结了卷积神经网络的发展阶段,介绍了卷积神经网络的基本结构和关键技术,选取LeNet、AlexNet、VGGNet、GoogLeNet和ResNet等几种具有代表性的网络进行分析对比,并指出各个网络的应用场景和优缺点,最后提出卷积神经网络未来的研究发展方向.