论文部分内容阅读
为合理考虑路基沉降预测时诸多影响因素的不确定性与随机性,提出基于神经网络范例推理的路基沉降预测模型。以同类工程的成功经验为基础,建立了基于神经网络的沉降范例检索模型,在范例相似度计算中,引入归一化效用函数,通过神经网络的学习,建立当前沉降范例与沉降源范例之间的相似关系,最终实现当前沉降范例的沉降预测。对黄土沟壑区湿软路基沉降预测结果表明,该模型具有较高的预测准确性,预测值与实测值绝对误差小于10%。