论文部分内容阅读
通过对独立分量分析(ICA)理论的研究以及对人机交互手势特征的分析,提出了一种基于ICA的静态手势特征提取与识别的方法。用ICA方法分别提取各类静态手势图像的独立分量特征(ICF),构成手势图像的独立基函数空间,对手势图像采用独立分量的最小二乘意义下的表示,结合系统的判别阈值实现对手势的分类识别。系统采用4类手势,共计80幅图像,对方法的有效性进行了检测。实验结果表明,这一方法不仅可行,而且能够获得满意的识别结果。