论文部分内容阅读
为了快速且准确地估算大区域范围内土壤水分信息,实现松嫩平原北部区域旱情的监测。基于Landsat 8时间序列数据,计算归一化植被指数(NDVI)和地表温度指数(LST)的时间序列数据,在此基础上利用Savitzky-Golay(S-G)滤波对所得时间序列数据进行了重构,弥补因受云和大气影响而产生的噪声。然后根据重构后的NDVI和LST数据,求得温度植被指数(TVDI);探讨TDVI和土壤湿度之间的关系,构建土壤湿度反演模型,并结合野外实测数据对模型精度进行了验证。结果表明:(1)S-G滤波可以有效地弥补因