论文部分内容阅读
为帮助用户快速、准确地获取所需的网络资源为目的,提出基于深度学习的网络资源优先协同过滤推荐方法.首先分析推荐过程的组成架构,将其划分为信息处理、用户建模、推荐算法等多个功能模块.然后通过共现关系分别描述网络资源与用户之间的关联性,从而建立资源-用户特征矢量模型,获取表示全面特征的目标函数.将能够反映丰富物理量的张量引入到神经网络中,合并一阶张量与二阶张量,得出神经网络的输出信号,再采用反向传播算法对神经网络做深度学习,获得输出层、隐含层与输入层误差.计算整体损失函数的偏导数,直到损失函数收敛,结束学习过程,从而生成优先协同过滤推荐结果.仿真结果证明,上述方法可以更有效的获取资源与用户特征,可为用户推荐合适的网络资源.