论文部分内容阅读
肺结节是肺癌的症状.在CT图像中,肺结节的形状和大小常被用来进行肺癌的诊断,然而良性和恶性结节的鉴别对于疾病的治疗具有重要意义.由于良恶性结节的边缘纹理特征区别大,因此本文首先利用基于改进的边缘检测算子的灰度-梯度共生矩阵(GGCM)提取小梯度优势、灰度分布不均匀性、能量、灰度熵、梯度熵、混合熵、逆差距、相关性等肺部CT图像的14种纹理特征.然后利用改进的ReliefF算法去除作用小的特征,保留重要特征的特征权重值.最后将重要特征的权重值应用于改进距离度量准则的k-means算法中进行良恶性结节的分