论文部分内容阅读
[目的]更好地理解和准确地把握新冠肺炎疫情期间惠企政策出台和实施的总体情况,推进政策目标的有效实现.[方法]基于新冠肺炎疫情期间所出台的政策文本数据、企业注册与投资关系数据以及新冠肺炎确诊数据等多源数据,综合考虑各省政策出台文件数、政策评价三大指标得分、受灾程度、产业结构及与湖北经济联系程度等多方面,采用K-Means聚类方法,确定各省惠企政策偏离等级.[结果]京、沪、闽等省市惠企政策偏离度等级为I级,湘、豫、云等省市偏离度等级为III级,惠企政策力度与其经济潜在受损程度不匹配,需补充采取更多惠企措施.[结论]所提方法融合了计量经济学、指标评价和机器学习算法,以实证数据为基础,实现融合多因素的政策偏离度评价,具有现实意义和可推广性.