论文部分内容阅读
研究了InP、InGaAs体材料薄膜和InGaAs/InP量子阱和超晶格的低压MOCVD生长。InP外延层背景电子浓度为(1-5)×10~(13)/cm~3,低温电子迁移率为45240cm~2/V·s。InGaAs/InP异质结应变层匹配度可以控制在±(1-3)×10~(-3),匹配的InGaAs层的背景电子浓度为(2-5)×10~(13)/cm~3,室温及低温电子迁移率为8660和65150cm~2/v·s。InGaAs/InP量子阱的标定阱宽从114A减少到6.4A时低温光致发光峰能量上移量从59meV增加到362.5meV,线宽从12.4meV增加到57meV。InGaAs/InP超晶格的X射线衍射曲线显示了高至3级的卫星峰结构。观察到从AsH_3切换到PH_3时由于As的优先掺入特性引起的InP中As的掺入,其组份达到0.09。证实了它是线宽加大、荧光峰上移降低的一个因素。
Low-pressure MOCVD growth of InP, InGaAs bulk films and InGaAs / InP quantum wells and superlattices was investigated. The background electron concentration of InP epitaxial layer is (1-5) × 10 ~ (13) / cm ~ 3 and the low temperature electron mobility is 45240cm ~ 2 / V · s. The matching degree of InGaAs / InP heterojunction strained layer can be controlled within ± (1-3) × 10 -3, the background electron concentration of matching InGaAs layer is (2-5) × 10-13 / cm ~ 3, room temperature and low temperature electron mobility of 8660 and 65150cm ~ 2 / v · s. InGaAs / InP quantum well calibration well width reduced from 114A to 6.4A low temperature photoluminescence peak energy shift from 59meV increased to 362.5meV, line width increased from 12.4meV to 57meV. X-ray diffraction curves of InGaAs / InP superlattices show up to three satellite peak structures. The incorporation of As in InP due to the preferential incorporation of As upon switching from AsH3 to PH3 was observed to have a composition of 0.09. Confirmed that it is the line width increases, the fluorescence peak down a factor.