一种基于聚类的异常入侵检测方法

来源 :计算机安全 | 被引量 : 0次 | 上传用户:enginery_puppet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的K均值聚类算法采用欧式距离计算样本间的相似度,由于未考虑不同样本属性对于衡量样本间距离区分度的重要性,导致相似度计算不准确,聚类性能较差。提出了一种改进的K均值聚类算法,通过计算每个属性相对于聚类类别的信息增益率,将信息增益率作为属性权重计算加权欧式距离,使对类别区分度贡献较大的属性拥有较大的权重,以提高样本间的相似性度量的准确性。在经典的入侵检测数据集UCI KDD CUP上的实验结果证明,与传统的基于K均值的入侵检测方法相比,此方法能够有效地提高检测准确率。
其他文献