论文部分内容阅读
针对用户的偏好推荐需求,提出一种改进的LFM算法BBLFM算法,通过引入隐含特征将稀疏的相关矩阵分解为两个相对稠密的矩阵,减少了空间复杂度,同时实现LFM的隐语义分析功能,深入挖掘了用户的潜在特征,提高了推荐的准确性。具体地,设计了一种基于BM-25的精确用户关注点查找与权重赋值方法,同时引入软概率情感分析方法的结果,合成出一种基于语义的标签体系。此外,还构建了一个基于BERT的用户偏好分析网络,根据用户曾经浏览或点击的历史论坛数据,来为用户画像,给出用户的主题偏好。在真实的百度贴吧数据集上进行的对比实验