采用特征向量夹角联合概率密度函数的信源个数估计方法

来源 :上海交通大学学报 | 被引量 : 0次 | 上传用户:heyouzhang034
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统信源数估计算法如基于Akaike信息论准则方法、最小描述长度准则方法及盖氏圆盘方法等存在低信噪比时性能下降甚至完全不能正确估计信源个数的问题,提出一种基于协方差矩阵特征向量之夹角联合密度函数的信源数估计方法.该方法采用样本协方差矩阵特征分解后噪声子空间的一特征向量与其他特征向量求夹角余弦,然后求这些特征向量之夹角余弦的联合概率密度函数值,最后将两相邻密度函数值相除与阈值比较确定信源个数.数值模拟与水池实验表明该方法在低信噪比时性能远远好于以往算法,在阵列信号处理中具有一定的应用价值.
其他文献
为实现在复杂背景下对人手进行准确、快速的位置跟踪与轮廓跟踪,并针对粒子滤波无法获取人手目标的准确信息与人手深凹区域获取难的问题,提出一种基于肤色自适应梯度矢量流主动轮廓(Gradient Vector Flow Snake,GVF Snake)模型的粒子滤波算法实现人手跟踪.该算法首先对粒子滤波得到的人手区域进行肤色灰度增强,弱化背景梯度信息,然后对该区域利用引入自适应梯度矢量流场和肤色自适应外部
基于一类实际生产决策需求,提出了依赖于项目拆分的资源投入调度问题.在分析项目拆分对资源投入影响的基础上,以资源投入最小化为目标,建立了项目拆分与资源投入调度问题的集