论文部分内容阅读
针对基本粒子群优化算法搜索精度低和易早熟的缺点,提出了一种基于自适应选择和变异算子的改进粒子群算法。选择算子可提高粒子群的整体适应度,增强粒子群的局部搜索能力;变异算子则能扩大粒子群的搜索范围,防止粒子群陷入局部最优。搜索时,根据全局极值在迭代过程中的变化情况,自适应地调整选择算子和变异算子使粒子群飞向全局最优。典型函数的算例测试表明,改进的粒子群算法较传统算法具有更高的搜索精度和更强的抗早熟能力。