论文部分内容阅读
在从运动恢复结构(structure from motion,SfM)的过程中,无序影像间的匹配非常耗时,一方面受制于特征匹配本身,另一方面受制于大量的图像间匹配,其计算复杂度为O(n2)。为减少匹配次数,本文提出基于深度卷积特征(deep convolution feature,DCF)的影像关系表创建方法。首先利用在ImageNet上训练好的VGG-16卷积神经网络提取影像的卷积层特征图,然后对特征图进行和池化操作,最后将该向量归一化,作为图像的特征。通过向量点乘,计算数据集中的每张影像和其余所