论文部分内容阅读
对于多目标跟踪问题,最近提出的全局次优的广义概率数据关联算法(GPDA)由于其新颖的可行性划分规则和较小计算存储需求而受到广泛关注。本文提出了一种基于广义联合事件分割组合的新关联算法。它通过引入目标的方向性信息,在基于新规则划分后,对进入有效域的传感器量测估计值权重系数进行调整,从而使最终的估计值更准确,关联精度得到进一步提高。利用该改进算法对杂波环境下多目标跟踪进行仿真实验,结果表明提出的关联算法继承了原有算法的优点,同时用较小的计算代价使得跟踪性能得到较大改善。