论文部分内容阅读
设G为一个有限π-可分群,其中π为一个素数集合(其中2∈π)。在这篇文章中,我们证明了:设X∈Bπ(G),X对应的表示为T且T是由n-维G空间V产生的G的不可约表示,则T是单项的当且仅当V有基[ν1,ν2,…,νn],使得ν1X=ai(x)νσχ(i),i=1,2,…,n,χ∈G,其中χ→σχ为同态,而σχ是[1,2,…,n]的置换,且ai(χ)≠0是复数。