论文部分内容阅读
根据电力市场的相关历史数据准确地预测出未来的市场出清电价,对于市场中的各个参与者都具有十分重要的意义.在建立了一种粒子群优化(PSO)下的BP神经网络电价短期预测模型的基础上,采用PSO进化算法,反复抽取训练子集样本,通过对应的验证样本预测误差寻找近似最有代表性的训练子集,解决了模型的训练样本参数难以设置的问题.实验验证了该预测模型的有效性,结果表明处理好预测模型样本参数的选择问题,能够提高模型的稳定性及预测精度.