一种新颖的差分混合蛙跳算法

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:wangchun2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在使用智能优化算法处理函数优化问题时,保持种群的多样性及加快种群的收敛速度可以提升一个算法的性能.针对混合蛙跳算法在寻优过程中易陷入局部最优和早熟收敛的缺点,本文提出了一种新颖的差分混合蛙跳算法.该算法借鉴差分进化中的变异交叉思想,在前期利用子群中其他个体的有用信息来更新最差个体,增加局部扰动性,以提高种群的多样性;在后期为加快收敛速度使用最好个体的信息进行变异交叉操作.同时本文使用归档集进一步保留种群的多样性.仿真测试结果表明:该算法在求解优化问题时较基本蛙跳算法和平均值蛙跳算法具有更好的寻优性能.
其他文献