论文部分内容阅读
针对传统基于支持向量机的目标跟踪算法中计算复杂度高,目标由于严重遮挡或者出离场景导致的目标跟踪漂移,提出一种基于结构化多分类SVM和Hausdorff距离的目标跟踪算法。通过提取相邻帧之间的canny特征算子,计算目标轮廓特征点的Hausdorff距离,整合相邻帧的图像跟踪序列,对样本学习的采集进行预判,避免传统算法中不必要的样本在线学习;采用结构化多分类SVM目标输出预测函数增加目标变换种类,增强目标跟踪的鲁棒性和准确性。实验结果表明,该算法延续了支持向量机良好的泛化能力,可以有效跟踪目标的各种变