论文部分内容阅读
为了提高基本蚁群算法(Ant Colony Algorithm)的全局求解能力,对基本蚁群算法进行了改进,提出了一种高效的智能蚁群优化算法。它修改了基本蚁群算法中信息素、挥发因子的更新规则,使得每轮搜索后信息素的增量能更好地反映解的质量,有效地避免陷入局部最优,以加快收敛;另外,采用了一种最近节点选择策略使之适应大规模问题求解,对路径进行优化,提高搜索效率。通过对TSP问题的仿真结果表明,改进后的蚁群算法在求解最优解和收敛性能方面都取得了很好的效果。