论文部分内容阅读
作为支持向量机(support vector machine,SVM)高光谱影像分类的一个重要环节,参数设置的效率和精度直接影响到SVM模型训练效率和最终分类精度。本文首先建立一个SVM高光谱影像分类器,提出了利用免疫克隆选择算法优化的交叉验证进行核函数参数和惩罚因子C的优化选择的方法,得到了一种基于克隆选择优化的支持向量机(clonal selection SVM,CSSVM)高光谱影像分类器。然后将CSSVM与传统的基于网格搜索交叉验证的支持向量机(gird search SVM,GSSVM)分