低熔点元素及合金改性HDDR钕铁硼磁粉的研究进展

来源 :上海师范大学学报·自然科学版 | 被引量 : 0次 | 上传用户:bittercoffee456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:
  氢化-歧化-脱氢-再复合(HDDR)工艺是制备各向异性钕铁硼(NdFeB)磁粉的主要方法.但HDDR磁粉实际矫顽力(HC)较低,重稀土元素Dy的引入可以显著提高其HC,经研究发现引入的Dy主要分布于磁体晶界,起调控晶界相的作用:增加晶界厚度,提高磁粉的各向异性场(HA).但重稀土元素Dy自然资源匮乏且价格昂贵,限制了HDDR磁粉的发展.为减少磁粉中重稀土元素用量、降低成本,研究人员通过晶界扩散低熔点元素及合金来替代重稀土元素Dy,因低熔点物质在扩散过程中呈液相,提高了扩散介质与晶界相的接触面积及扩散系数,有利于其沿晶界扩散并调控晶界相,使磁粉HC提高.对近些年晶界扩散低熔点元素及合金提高HDDR-NdFeB磁粉HC的部分研究成果进行了归纳.
  关键词:
  HDDR磁粉; 晶界扩散; 矫顽力; 低熔点金属; 微观结构
  中图分类号: TM 273文献标志码: A文章编号: 1000-5137(2017)06-0888-11
  Abstract:
  The hydrogenation-disproportionation-desorption-recombination (HDDR) process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC) of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA) and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application ofHDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element
  Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.
  Key words:
  HDDR power; grain boundary diffusion; coercivity; low melting metal; microstructure
  0前言
  釹铁硼(NdFeB)永磁体由于其远高于其他磁体的磁性能而被广泛应用于电子信息、医疗设备、电动汽车、风力发电等行业,是国民经济和国防工业发展不可或缺的基础功能材料之一.进入21世纪后,随着清洁能源等新兴产业的快速发展,进一步推动了高性能永磁材料,特别是NdFeB永磁体的发展.但同时也对NdFeB永磁体的性能提出了更严格的要求[1-2],需要其具有更高的矫顽力(HC)以抑制磁体在较高温度(150 ℃)下的快速磁衰退现象[3].
  1989年,Takeshita等[4-6]开发了制备NdFeB磁粉的氢化-歧化-脱氢-再复合(HDDR)工艺,首先使稀土化合物吸氢并歧化分解,然后脱氢促使歧化产物转变成细小晶粒,接近单畴粒子尺寸(250~300 nm).HDDR工艺细化了NdFeB磁粉的晶粒,提高了磁粉的HC[7-9].经过二十多年的发展,HDDR工艺不断地改进和完善,已由最初制备各向同性磁粉发展成为制备高HC各向异性NdFeB磁粉最有效、经济的方法.由此工艺制备的HDDR磁粉最大磁能积值是传统快淬法制备NdFeB磁粉的3~4倍[10].
  NdFeB磁体的永磁性能具有较大的负温度系数,因而其磁性能会随温度的升高急剧降低,影响其应用.改善钕铁硼磁粉温度特性的措施是提高其各向异性场(HA)及HC[11-12],通常是引入重稀土元素Dy.为探究Dy的作用,Nakamura等[13]于2005年首次将“晶界扩散”(GBD)的概念应用于钕铁硼磁体,对纯Dy、Dy2O3、DyF3和Dy-Ni-Al合金等通过磁控溅射、气相沉积、表面涂覆和浸渍等工艺,在磁体表面形成扩散源并对其扩散过程进行了研究.发现Dy沿着熔融的液态晶界富钕相扩散,修饰、优化磁粉晶界相微观结构和成分,增加了晶界相厚度及去磁耦合能力,提高了磁体的HA,从而使钕铁硼磁体HC提高[14-21].但重稀土元素在自然界储量少、价格昂贵,且Dy与Fe呈反铁磁性易引起磁稀释效应[22-24],而无Dy的HDDR钕铁硼磁粉HC仅有16.5 kOe左右,远不能满足实际应用[25].人们期望通过晶界扩散低熔点金属代替重稀土元素Dy在晶界中的作用,由于低熔点介质在扩散过程中以液相存在,提高了主相与晶界相间的润湿性,促进了晶界相传质过程,有利于其均匀分布,促使磁体HC提高.本文作者就晶界扩散低熔点元素及合金对HDDR-NdFeB磁粉HC的影响进行了阐述.   1晶界扩散低熔点金属对HDDR磁粉性能影响
  Sepehri-Amin等[25-27]探究了元素Ga对HDDR钕铁硼磁粉晶界相结构和成分的影响.随着脱氢再复合(DR)时间的增加,Ga的扩散可以使晶界相宽度明显增加,并由晶态向非晶态转变(图1).
  进一步用三维原子探针(3DAP)(图2)分析了Ga在晶界相中的分布,发现Ga的富集促使晶界相中Nd含量升高而Fe、Co含量减少,降低了晶界相的磁导率,说明Ga的扩散可以增强晶界相去磁交换耦合能力及对畴壁的钉扎作用,使HDDR磁粉HC提高.
  Morimoto等[28]通过晶界扩散金属Al制备出HC达22.12 kOe的HDDR磁粉,经研究发现Al的晶界扩散有利于提高主相Nd2Fe14B和晶界相间的润湿性,使晶界变得更加光滑、平直,并且使磁粉晶界相厚度由1.5 nm增加到3 nm(图3),相邻主相被有效分离[29-30].
  利用电子探针X射线显微(EPMA)分析进一步探究了低熔点金属Al对HDDR磁粉晶界相的优化机制(图4),发现Al元素初始主要集中在主相Nd2Fe14B的表面(图4c).在扩散过程中,Al元素首先在主相Nd2Fe14B的边界处形成富铝金属相,随后富Al相与富Nd相反应形成流动性更好的富Nd-Al液相(图4b),增加了主相-中间相的润湿性,减小了反磁化形核的场所,抑制了反磁化形核.但由于Al元素在主相Nd2Fe14B中的溶解度较大,主相Nd2Fe14B中的Fe易被部分Al替代,使磁粉饱和磁化强度降低[31].
  Dempsey等[32]对高矫顽力NdFeB膜研究时发现(图5),富钕相中Cu的存在降低了晶界相的熔化温度,增加了主相-晶界相的润湿性,促进了晶界富Nd相的均匀分布,增强了晶界相对主相的磁隔离作用.
  2晶界扩散低熔点合金对HDDR磁粉性能影响
  Liu等[33]研究了晶界扩散Nd70Cu30温度(600、700、800 ℃)对HDDR磁粉微观结构和磁性能的影响,在700 ℃晶界扩散Nd-Cu合金(质量分数为6%)时,磁粉HC达到最大值16.9 kOe.物相分析发现,600 ℃和800 ℃晶界扩散后磁粉特征峰向高角度方向偏移,表明Nd2Fe14B相的晶格发生收缩,可能是由于晶格中残余氢的释放所引起[34-35](图6).
  通过TEM分析(图7)可知,主相外围形成了光滑连续的晶界富钕相,并且晶界相中的Nd浓度由于液相Nd-Cu合金的进入而高于初始HDDR磁粉,增加了晶界厚度.因此,优化晶界扩散温度不仅有利于低熔点Nd-Cu合金液相对HDDR磁粉晶界相微观结构及成分的修饰和改善,还有利于抑制Nd2Fe14B晶格中残余氢的释放[36].
  Sepehri-Amin等[37]的研究结果表明低熔点Nd-Cu合金(Nd80Cu20,熔点为520 ℃)经700~800 ℃扩散处理后进入HDDR磁粉晶界,磁粉HC由16.6 kOe提高到19.5 kOe,提高了17.5%.经TEM分析可知(图8),晶界厚度由1.3 nm增加到2.4 nm.对扩散过程进行微磁学分析发现,低熔点合金液相扩散进入晶界,减小了主相Nd2Fe14B间的磁交换耦合作用,抑制了反磁化形核并且阻碍畴壁移动,使磁粉的矫顽力增加[38].
  Noguchi等[39]通过扩散三元低熔点合金Nd-Cu-Al制备出高HC的HDDR磁粉.如图9所示,Nd、Cu元素主要富集在晶界上,而Al元素则均匀的弥散分布在主相以及晶界上.由于Nd-Cu和Nd-Al合金的熔点均低于晶界富Nd相的熔点,增加了扩散过程中主相Nd2Fe14B和富稀土相间的润湿性,促进了富钕相的流动,加强了晶界相对主相Nd2Fe14B的包裹,孤立了硬磁相,并使主相表面更加圆滑,使反磁化形核变的更加困难.
  Wan等[40]选用比Nd-Cu(520 ℃)合金熔点更低的Pr-Cu(质量分数为3% Pr68Cu32,熔点为472 ℃)合金为扩散源,经扩散处理后使HDDR磁粉HC提高到11.4 kOe,而在母合金中直接添加Pr-Cu合金制备的HDDR磁粉HC只有7 kOe.这是因为晶界扩散处理后,三叉区的大块富Nd/Pr相消失,晶界富Nd/Pr相的分布更加均匀.
  Lin等[41-42]在650 ℃下晶界扩散质量分数为5%的Pr68Cu32合金,制备出HC达18 kOe的HDDR磁粉,矫顽力增加了近40%.Pr-Cu液相合金通过毛细作用沿主相-晶界相界面扩散,并逐步进入晶界相,使晶界厚度增加,同时主相Nd2Fe14B被连续的液相晶界包裹,相邻主相被晶界相分离(图10).并且扩散处理后晶界相中的铁磁性元素含量明显减小,降低了晶界相的铁磁性[43].
  Wang等[44]研究了低熔点Nd-Cu合金对热压/热变形HDDR磁体HC的影响,发现扩散质量分数为2% Nd-Cu合金后,磁体相邻主相Nd2Fe14B之間有明显的富钕晶界相形成,厚度为2.4 nm(图11).表明在热压/热变形过程中Nd-Cu液相的扩散,使晶界厚度增加,有效孤立了硬磁相,使硬磁相之间去磁耦合.同时,Nd-Cu液相的添加,使磁体变形能力增强,有助于热变形磁体在形变过程中织构的形成.
  3其他钕铁硼永磁材料的晶界扩散
  Zheng等[45]用高硬度碳化钨(WC)作为扩散介质使热变形钕铁硼磁体的HC提高了14%.热压过程中,由于高硬度WC位于片状晶粒边界,使晶粒局部压应力增加,抑制了主相晶粒的增长,降低了粗晶区比例;热变形过程中WC分解,其中C元素进入相邻的主相并与富钕相反应形成含钕碳化物,而主相中的Fe进入晶界WC中形成了新相Fe2W[46-47](图12).新相的形成加强了晶界的钉扎作用,进一步限制了主相晶粒的长大.
  Li等[48-50]研究了不同扩散物质对一段式热压钕铁硼磁体的影响,发现对矫顽力提高最大的扩散物质为Zn粉,可以使热变形快淬粉(MQPA)磁体的矫顽力提高57%,这是因为低熔点金属Zn在热变形温度的作用下熔化并沿晶界扩散,增强了晶界相的钉扎能力,限制了主相晶粒的增长.   Saito等[51]发现质量分数为1% Zn的扩散可以使热压磁体的HC提高57.8%.微观分析表明,磁体HC提升的主要原因是Zn的扩散使磁体主相晶粒尺寸由60 nm减小到50 nm,细化了晶粒尺寸.
  Zhou等[52]在烧结钕铁硼磁体表面磁控溅射MgO并研究了其晶界扩散过程对磁性能的影响.发现MgO扩散进入晶界后与晶界相反应生成Nd-O-Fe-Mg新相,改善了主相-晶界相间的润湿性,同时新相的形成加强了晶界对畴壁的钉扎能力.
  Ni等[53-54]研究发现Al-Cu合金(Al85Cu15,熔点为575±25 ℃)的晶界扩散可以提高晶界富Nd相的流动性,使晶界变得更加清晰、光滑、连续,加强了其对主相的隔离.
  大量研究表明,无论是晶界扩散低熔点金属、合金或者化合物还是晶界扩散高熔点/高硬度化合物,其对NdFeB磁体HC的提升效果均比较显著.晶界扩散是包含金属学和磁性物理學的复杂过程,其扩散机制仍在不断探索之中并被各国研究者广泛关注.
  4小结
  采用晶界扩散低熔点元素及合金替代重稀土元素Dy,是制备高矫顽力无Dy-HDDR钕铁硼磁粉的重要方法.低熔点扩散源在适宜的扩散工艺下呈液态沿磁粉晶界扩散,促进了扩散介质的流动,使其与晶界相的接触面积及扩散系数增加,便于扩散介质进入晶界富稀土相,调控晶界相微观结构.
  随着人们对晶界扩散工艺研究的不断深入,晶界扩散介质由含Nd、Pr等元素的低熔点稀土合金逐渐发展到低熔点金属及金属氧化物、氮化物等非稀土扩散介质,进一步减少稀土元素用量,降低生产成本;扩散方法也已发展出磁控溅射,表面涂覆、蒸镀及电镀等多种工艺.
  然而,由于晶界扩散源(如Al、Cu、Nd-Al等低熔点金属)均为非磁性元素,添加后虽能使磁粉HC显著提高,但同时也可能会导致剩磁(Br)部分降低.因此在不断提高矫顽力的前提下,还应对HDDR钕铁硼磁粉各向异性形成机理,矫顽力形成机制和HDDR工艺展开深入地研究,以开发具有高矫顽力且其他磁能优异的HDDR-NdFeB磁体.
  参考文献:
  [1]钟明龙,刘徽平.我国钕铁硼永磁材料产业技术现状与发展趋势 [J].电子元件与材料,2013,32(10):6-9.
  Zhong M L,Liu H P.Industrial technology situation and development trends of Nd-Fe-B permanent magnetic materials in China[J].Electronic Components and Materials,2013,32(10):6-9.
  [2]蒋龙.粘结永磁体及其应用 [J].金属功能材料,1999,6(5):202-204.
  Jiang L.Bonded permanent magnets and their applies[J].Metallic Functional Materials,1999,6(5):202-204.
  [3]Zhang Y,Han J,Liu S,et al.Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders [J].Scripta Materialia,2016,110:57-60.
  [4]Takeshita T.Present status of the hydrogenation-decomposition-desorption-recombination process as applied to the production of magnets [J].Journal of Alloys and Compounds,1993,193(1-2):231-234.
  [5]罗阳,李红卫,于敦波,等.HDDR各向异性NdFeB研究进展 [J].金属功能材料,2009,16(1):24-28.
  Luo Y,Li H W,Yu D B,el al.Progress on the anisotropic NdFeB magnets by HDDR process [J].Metallic Functional Materials,2009,16(1):24-28.
  [6]Nakayama R,Takeshita T,Itakura M,et al.Magnetic properties and microstructures of the Nd-Fe-B magnet powder produced by hydrogen treatment [J].Journal of Applied Physics,1991,70(7):3770-3774.
  [7]周寿增,董清飞.超强永磁体:稀土铁系永磁材料 [M].北京:冶金工业出版社,1999.
  Zhou S Z,Dong Q F.Superpermanent magnets RE-iron based permanent materials [M].Beijing:Metallurgical Industry Press,1999.
  [8]潘树明.强磁体-稀土永磁材料原理、制造与应用 [M].北京:化学工业出版社,2011.
  Pan S M.Principle,manufacture and application of strong magnet-rare earth permanent magnet [M].Beijing:Chemical Industry Press,2011.   [9]劉敏.各向异性 HDDR NdFeB 磁粉的制备与研究 [D].济南:山东大学,2010.
  Liu M.Preparation and investigation of anisotropic HDDR NdFeB magnetic powers[D].Jinan:Shandong University,2010.
  [10]岳明,刘旭波,肖耀福,等.合金元素Co,Zr,Ga在HDDR各向异性NdFeB中的作用 [J].金属功能材料,2001,8(3):35-38.
  Yue M,Liu X B,Xiao Y F.Role of alloying elements Co,Zr,Ga in HDDR anisotropic NdFeB [J].Metallic Functional Materials,2001,8(3):35-38.
  [11]Han J,Liu S,Wang C,et al.Effects of the conventional HDDR process and the additions of Co and Zr on anisotropy of HDDR Pr-Fe-B-type magnetic materials [J].Journal of Magnetism and Magnetic Materials,2009,321(9):1331-1334.
  [12]刘涛,周磊,程星华,等.烧结钕铁硼添加合金元素的研究进展 [J].金属功能材料,2011,18(2):56-63.
  Liu T,Zhou L,Cheng X H,el al.Progress of sintered NdFeB magnets with addition element[J].Metallic Functional Materials,2011,18(2):56-63.
  [13]Nakamura H,Hirota K,Shimao M,et al.Magnetic properties of extremely small Nd-Fe-B sintered magnets [J].IEEE Transactions on Magnetics,2005,41(10):3844-3846.
  [14]Sepehri-Amin H,Ohkubo T,Hono K.The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd-Fe-B sintered magnets [J].Acta Materialia,2013,61(6):1982-1990.
  [15]Hirota K,Nakamura H,Minowa T,et al.Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets [J].IEEE Transactions on Magnetics,2006,42(10):2909-2911.
  [16]Suzuki H,Satsu Y,Komuro M.Magnetic properties of a Nd-Fe-B sintered magnet with Dy segregation [J].Journal of Applied Physics,2009,105(7):07A734.
  [17]Komuro M,Satsu Y,Suzuki H.Increase of coercivity and composition distribution in fluoride-diffused NdFeB sintered magnets treated by fluoride solutions [J].IEEE Transactions on Magnetics,2010,46(11):3831-3833.
  [18]Nakamura H,Hirota K,Ohashi T,et al.Coercivity distributions in Nd-Fe-B sintered magnets produced by the grain boundary diffusion process [J].Journal of Physics D:Applied Physics,2011,44(6):064003.
  [19]Xu F,Wang J,Dong X,et al.Grain boundary microstructure in DyF3 diffusion processed Nd-Fe-B sintered magnets [J].Journal of Alloys and Compounds,2011,509(30):7909-7914.
  [20]Oono N,Sagawa M,Kasada R,et al.Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy [J].Journal of Magnetism and Magnetic Materials,2011,323(3):297-300.
  [21]Sepehri-Amin H,Ohkubo T,Hono K.Grain boundary structure and chemistry of Dy-diffusion processed Nd-Fe-B sintered magnets [J].Journal of Applied Physics,2010,107(9):09A745.   [22]Chen B,Liu X,Chen R,et al.Design and fabrication of Dy-free sintered permanent magnets with high coercivity [J].Journal of Applied Physics,2012,111(7):07A710.
  [23]Lin C,Liu Z X,Xu X F.Magnetic properties of Nd2(Fe1-xCox)14B and Y2(Fe1-xCox)14B [J].IEEE Transactions on Magnetics,1987,23(5):2296-2298.
  [24]Lin C H,Chen S K,Lin K D,et al.Magnetic properties and microstructure of magnesium-doped Nd-Fe-B magnets [J].Journal of Applied Physics,1988,64(10):5513-5515.
  [25]Sepehri-Amin H,Li W F,Ohkubo T,et al.Effect of Ga addition on the microstructure and magnetic properties of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powder [J].Acta Materialia,2010,58(4):1309-1316.
  [26]Sugimoto S,Murai H,Koike N,et al.Improvement of coercivity of anisotropic Nd-Fe-B HDDR powders by Ga addition [J].Journal of Magnetism and Magnetic Materials,2002,239(1):444-446.
  [27]Burkhardt C,Steinhorst M,Harris I R.Detailed SEM studies of the HDDR behaviour of direct-reduced Nd15Fe77B8 and Nd15Fe77-xB8Gax powders [J].Journal of Alloys and Compounds,1996,237(1-2):113-120.
  [28]Morimoto K,Katayama N,Akamine H,et al.Coercivity enhancement of anisotropic Dy-free Nd-Fe-B powders by conventional HDDR process [J].Journal of Magnetism and Magnetic Materials,2012,324(22):3723-3726.
  [29]Knoch K G,Grieb B,Henig E T,et al.Upgraded Nd-Fe-B-AD (AD=Al,Ga) magnets:wettability and microstructure [J].IEEE Transactions on Magnetics,1990,26(5):1951-1953.
  [30]Knoch K G,Henig E T,Fidler J.Correlation between Al addition and microstructural changes in Nd-Fe-B magnets [J].Journal of Magnetism and Magnetic Materials,1990,83(1-3):209-210.
  [31]Rodewald W,Fernengel W.Properties of sintered Nd-Fe-TM-B magnets [J].IEEE Transactions on Magnetics,1988,24(2):1638-1640.
  [32]Dempsey N M,Woodcock T G,Sepehri-Amin H,et al.High-coercivity Nd-Fe-B thick films without heavy rare earth additions [J].Acta Materialia,2013,61(13):4920-4927.
  [33]Liu S,Kang N H,Yu J H,et al.Effect of Grain Boundary Modification on the Microstructure and Magnetic Properties of HDDR-treated Nd-Fe-B Powders [J].Journal of Magnetics,2016,21(1):51-56.
  [34]Matin M A,Kwon H W,Lee J G,et al.Origin of Poor Thermal Stability of HDDR-Treated Nd-Fe-B-Type Material [J].IEEE Transactions on Magnetics,2014,50(1):1-4.
  [35]Matin M A,Kwon H W,Lee J G,et al.Coercivity of hot-pressed compacts of Nd-Fe-B-type HDDR-treated powder [J].Journal of Magnetics,2014,19(2):106-110.   [36]Nishio S,Sugimoto S,Goto R,et al.Effect of Cu addition on the phase equilibria in Nd-Fe-B Sintered Magnets [J].Materials Transactions,2009,50(4):723-726.
  [37]Sepehri-Amin H,Ohkubo T,Nishiuchi T,et al.Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by the diffusion of Nd-Cu eutectic alloys [J].Scripta Materialia,2010,63(11):1124-1127.
  [38]Wang H,Chen R,Yin W,et al.The effect of Nd-Cu diffusion during hot pressing and hot deformation on the coercivity and the deformation ability of Nd-Fe-B HDDR magnets [J].Journal of Magnetism and Magnetic Materials,2017,438:35-40.
  [39]Noguchi K,Mishima C,Yamazaki M,et al.Development of Dy-free NdFeB anisotropic bonded magnet [C].Electric Drives Production Conference,Nuremberg:University of Erlangen-Nuremberg,2011.
  [40]Wan F,Han J,Zhang Y,et al.Coercivity enhancement in HDDR near-stoichiometric ternary Nd-Fe-B powders [J].Journal of Magnetism and Magnetic Materials,2014,360:48-51.
  [41]Lin Z,Han J,Yang J,et al.Self-organized rod-like nanostructure in Pr2Fe14B-type alloy and its role in inducing texture during the early stages of disproportionation [J].Scripta Materialia,2011,65(3):206-209.
  [42]Lin Z,Han J,Xing M,et al.Improvement of coercivity and thermal stability of anisotropic Nd13Fe79.4B7Nb0.3Ga0.3 powders by diffusion of Pr-Cu alloys [J].Applied Physics Letters,2012,100(5):1-4
  [43]Ming Y,Xubo L,Jiuxing Z.Magnetization reversal mechanism of anisotropic HDDR Nd2Fe14B-based magnet powder [J].Journal of Magnetism and Magnetic Materials,2004,269(2):227-230.
  [44]Wang H,Chen R,Yin W,et al.The effect of Nd-Cu diffusion during hot pressing and hot deformation on the coercivity and the deformation ability of Nd-Fe-B HDDR magnets [J].Journal of Magnetism and Magnetic Materials,2017,438:35-40.
  [45]Zheng X,Li M,Chen R,et al.Coercivity enhancement by inhibiting the formation of coarse grains region in hot-deformed Nd-Fe-B magnets with WC nano-particles addition [J].Scripta Materialia,2017,132:49-52.
  [46]Pan F,Zhang M,Zhao R F,et al.Some new Nd-rich carbides formed by solid state reaction of and carbon [J].Journal of Physics D:Applied Physics,1998,31(5):488-493.
  [47]Sasaki T T,Ohkubo T,Une Y,et al.Effect of carbon on the coercivity and microstructure in fine-grained Nd-Fe-B sintered magnet [J].Acta Materialia,2015,84:506-514.
  [48]Li Y,Kim Y B,Yoon T S,et al.Coercivity enhancement by Zn addition in hot deformed NdFeB magnets [J].Journal of Magnetism and Magnetic Materials,2002,242:1369-1371.   [49]Li Y,Kim Y B,Yoon T S,et al.Effects of some additives on the magnetic properties of single stage hot deformed NdFeB magnets [J].Journal of Applied Physics,2002,91(10):7887-7889.
  [50]Li Y,Kim Y B,Song M S,et al.The temperature dependence of the anisotropic Nd-Fe-B fabricated by single-stage hot deformation [J].Journal of Magnetism and Magnetic Materials,2003,263(1):11-14.
  [51]Saito T,Sajima Y,Nishio-Hamane D.Enhancement of magnetic properties by Zn addition in Nd-Fe-B hot-deformed magnets produced by spark plasma sintering method [J].Journal of Alloys and Compounds,2016,687:662-666.
  [52]Zhou Q,Liu Z W,Zhong X C,et al.Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion [J].Materials & Design,2015,86:114-120.
  [53]Ni J J,Ma T Y,Wu Y R,et al.Effect of post-sintering annealing on microstructure and coercivity of Al85Cu15-added Nd-Fe-B sintered magnets [J].Journal of Magnetism and Magnetic Materials,2010,322(22):3710-3713.
  [54]Ni J J,Ma T,Yan M.Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu [J].Journal of Magnetism and Magnetic Materials,2011,323(21):2549-2553.
  (責任编辑:郁慧)
其他文献
对管二分厂新安装的C型框架弯管机进行了改造,解决了以前存在的问题,使该设备能够有效地运行,提高了生产效率。
改革开放以来,我国经济得到了飞速的发展,人们对电力的需求也变得越来越大。为了缩小城乡差距,我国提出建设社会主义新农村的理念。社会主义新农村的建设,使得我国乡村对电力的需
育肥牛的价格通常比较高,但是因为其养殖周期较长,因此在养殖过程中容易出现较多问题,不仅影响育肥牛的养殖质量,而且影响养殖业的持续发展。本文针对育肥牛养殖过程中存在的问题
随着经济的迅速发展、现代化发展步伐的加快,土地管理档案的开发及利用在新时期的大背景下成为了关注的焦点和热点,现已成为档案学领域的前沿课题。跟随新时代的步伐,土地管理档