论文部分内容阅读
目前基于深度学习的肺癌辅助诊断方法存在无法准确定位病灶的缺陷。针对该问题,在现有U-net网络结构的基础上提出一种分两步走的基于改进U-net的肺癌识别方法。利用U-net获得病灶精确位置,通过CNN分类网络对病灶进行诊断,得到原始CT图像的检测结果。实验结果表明,该方法可以对肺部病灶进行较为精确的定位,分割效果的DSC相似度指数超过80%,对肺癌病灶进行分类诊断的准确率达到90.7%。