论文部分内容阅读
The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.
The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths. It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock. It is found that the accumulated plastic energy in the surrounding rock can berized by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma- tion of the surrounding rock by a pre-stress and time-space effect of the anchor support. The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.