论文部分内容阅读
审计是入侵检测的基础,为入侵检测提供必要的分析数据.在传统的网络安全审计与入侵检测系统中,需要由人工来定义攻击特征以发现异常活动.但攻击特征数据难以获取,能够预知的往往只是正常用户正常使用的审计信息.提出并进一步分析了一种基于支持向量描述(SVDD)的安全审计模型,使用正常数据训练分类器,使偏离正常模式的活动都被认为是潜在的入侵.通过国际标准数据集MITLPR的优化处理,只利用少量的训练样本,试验获得了对异常样本100%的检测率,而平均虚警率接近为0.