论文部分内容阅读
《数学课程标准》中明确提出:“让学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”在小学数学教育中有意识地向学生渗透一些基本数学思想方法是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。这点也是新课程标准充分强调的。为了有效落实《数学课程标准》关于掌握基本的数学思想方法这一总体目标,我们应该系统而有步骤地向学生渗透数学思想方法。问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立、数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的渗透。
一、重视数学知识的形成,体会数学思想方法
数学思想都是在一定的数学知识中呈现的,在教学过程中,教师不应该把数学的相关定理、概念、公式等直接告诉学生,应引导学生,让他们在猜测、分析、探究、验证数学知识的过程中不断地体会数学知识的形成过程,让学生感受到数学知识是如何变化而来的,并且在這一过程中不断地提高对数学方法的认识。在小学阶段,学生的各方面发展都不完善,在这一时期强化学生的数学思想,对于今后的学习和发展具有积极的意义。在数学教学中,教师选择适当的时机进行数学思想的渗透,引导学生形成数学思维,能够在今后的学习中不断地发现数学知识中的数学思想。例如,在学习梯形的面积问题时,让学生直接去进行计算会显得很难,学生不知道从哪下手。这时,教师就可以引导学生把梯形转化为以前学习过的图形,进行面积的计算。通过研究,学生发现可以两个梯形拼成一个平行四边形,利用平行四边形的面积计算公式,来进一步推导出梯形面积的计算方法。教师在教学中适当地利用这种转化的思想,引导学生体会到这种数学思想的形成过程,在以后的学习中逐渐形成利用转化的思想解决实际问题的意识和能力。
二、重视解决问题的教学,领悟数学思想方法
解决问题教学是小学数学教学中的重要组成内容和环节。通过问题解决训练,培养学生的思维,更重要的是还可以培养学生创造性思维,达到提高学生解决问题和创造性解决问题的能力。因此,我抓住有利时机,精心、巧妙地设计安排教学,突出和强化数学思想方法对解题的指导作用,加强数学应用意识,鼓励学生运用数学知识去分析、解决生活中实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步领悟数学思想方法。例如:生活中“付整找零”的生活原型教学中创设情景:小芳的妈妈原有420元钱,这个月又可以领到297元奖金,单位会计刘阿姨给妈妈3张100元的现钞,妈妈要找回3元给刘阿姨。把这个生活原型提炼为数学模型,420+297=420+300-3,从而明白:“多加要减”的算理。这个过程实质上是把一个实际问题,通过分析转化,归结为一个纯数学问题,这就是一个建模过程。很自然地渗透了数学思想方法。爱因斯坦说的好:“在一切方法的背后,如果没有一种生气勃勃的精神,它到头来,不过是一种笨拙的工具。”这里的精神,就是方法的本质认识——数学思想。
三、重视数学知识的复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。
数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如一教师在教学“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后,再次引导学生将这些平面图形面积计算。经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。
四、重视课外活动的开展,提升数学思想方法
开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期開展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。我尽量找机会让学生利用课余时间继续探究实际生活中的实际问题,使学生把在课堂中领悟到的数学思想方法反复应用,从而感受到数学本身的内在魅力。
一、重视数学知识的形成,体会数学思想方法
数学思想都是在一定的数学知识中呈现的,在教学过程中,教师不应该把数学的相关定理、概念、公式等直接告诉学生,应引导学生,让他们在猜测、分析、探究、验证数学知识的过程中不断地体会数学知识的形成过程,让学生感受到数学知识是如何变化而来的,并且在這一过程中不断地提高对数学方法的认识。在小学阶段,学生的各方面发展都不完善,在这一时期强化学生的数学思想,对于今后的学习和发展具有积极的意义。在数学教学中,教师选择适当的时机进行数学思想的渗透,引导学生形成数学思维,能够在今后的学习中不断地发现数学知识中的数学思想。例如,在学习梯形的面积问题时,让学生直接去进行计算会显得很难,学生不知道从哪下手。这时,教师就可以引导学生把梯形转化为以前学习过的图形,进行面积的计算。通过研究,学生发现可以两个梯形拼成一个平行四边形,利用平行四边形的面积计算公式,来进一步推导出梯形面积的计算方法。教师在教学中适当地利用这种转化的思想,引导学生体会到这种数学思想的形成过程,在以后的学习中逐渐形成利用转化的思想解决实际问题的意识和能力。
二、重视解决问题的教学,领悟数学思想方法
解决问题教学是小学数学教学中的重要组成内容和环节。通过问题解决训练,培养学生的思维,更重要的是还可以培养学生创造性思维,达到提高学生解决问题和创造性解决问题的能力。因此,我抓住有利时机,精心、巧妙地设计安排教学,突出和强化数学思想方法对解题的指导作用,加强数学应用意识,鼓励学生运用数学知识去分析、解决生活中实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步领悟数学思想方法。例如:生活中“付整找零”的生活原型教学中创设情景:小芳的妈妈原有420元钱,这个月又可以领到297元奖金,单位会计刘阿姨给妈妈3张100元的现钞,妈妈要找回3元给刘阿姨。把这个生活原型提炼为数学模型,420+297=420+300-3,从而明白:“多加要减”的算理。这个过程实质上是把一个实际问题,通过分析转化,归结为一个纯数学问题,这就是一个建模过程。很自然地渗透了数学思想方法。爱因斯坦说的好:“在一切方法的背后,如果没有一种生气勃勃的精神,它到头来,不过是一种笨拙的工具。”这里的精神,就是方法的本质认识——数学思想。
三、重视数学知识的复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。
数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如一教师在教学“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后,再次引导学生将这些平面图形面积计算。经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。
四、重视课外活动的开展,提升数学思想方法
开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期開展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。我尽量找机会让学生利用课余时间继续探究实际生活中的实际问题,使学生把在课堂中领悟到的数学思想方法反复应用,从而感受到数学本身的内在魅力。