求解随机机会约束规划的混合智能算法及应用

来源 :计算机应用 | 被引量 : 1866次 | 上传用户:g10703107
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为更有效地求解随机机会约束规划问题,提出一种基于克隆选择算法(CSA)、随机模拟技术及神经网络的混合智能算法。采用随机模拟技术产生随机变量样本矩阵训练反向传播(BP)网络以逼近不确定函数,之后在CSA中利用神经网络检验个体的可行性、计算适应度,从而得到优化问题的最优解。为保证算法搜索的快速性和有效性,CSA采用双克隆和双变异策略。仿真结果表明,与已有算法相比,混合智能算法在500代时已取得比较满意的结果,且其精度在单目标优化问题中提高了2.2%,在多目标优化问题中提高了65%;将该算法应用于求解水库
其他文献
随着土建施工项目的不断增多,人们也开始越来越多的关注其质量问题。本文详细分析了影响土建施工质量的因素,并以此提出了强化管理与控制的具体方法。
针对基于对象的图像检索问题,利用K均值(K-means)聚类,提出了一种新的基于多示例学习(MIL)框架的图像检索算法KP-MIL。该算法在正包和负包组成示例集合聚类,获取潜在正示例代表和包结构特性数据,然后利用径向基核分别度量两者的相似性,最后利用alpha因子均衡两者相似性对核函数结果的影响。在标准对象图像检索集SIGVAL上进行实验,实验结果表明,该方法是有效的且性能优于其他同类方法。
针对传统粒子群优化(PSO)算法寻优精度不高和易陷入局部收敛区域的缺点,引入混沌算法和云模型算法对PSO算法的进化机制进行优化,提出混沌云模型粒子群优化(CCMPSO)算法。在算法处于收敛状态时将粒子分为优秀粒子和普通粒子,应用云模型算法和优秀粒子对收敛区域局部求精,发掘全局最优位置;应用混沌算法和普通粒子对收敛区域以外空间进行全局寻优,探索全局最优位置。应用特征根法对CCMPSO算法的收敛性进行