基于差异进化算法的前馈神经网络在大坝变形监测中的应用

来源 :岩土力学 | 被引量 : 0次 | 上传用户:zdf657094142
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对当前大坝安全监测中广泛采用的回归模型欠拟合的不足,提出了基于差异进化算法的前馈神经网络模型。差异进化算法是基于种群策略的全局优化搜索算法,具有应用简单、收敛快的优点。采用该法训练的神经网络可以有效避免常规BP(back propagation)神经网络收敛于局部极小点的缺陷。将提出的方法应用于某拱坝的变形监测,通过计算表明,应用DE(differential evotntion)神经网络模型预报大坝变形的精度比常规回归模型和BP神经网络模型均有所提高。
其他文献
首先介绍了一种随机搜索优化方法—人工鱼群算法(AFSA),同时根据混沌(CHAOS)的遍历性和随机性等特点,将混沌系统和人工鱼群算法相结合形成了一种新的融合优化算法—混沌人工鱼群算