论文部分内容阅读
针对太阳能无人机螺旋桨滑流与机翼的气动干扰,考虑了低雷诺数流动下气体黏性和压缩性影响,并根据黎曼边界条件和涡量等效原则建立了能够快速计算分析螺旋桨-机翼气动干扰的非定常面元/黏性涡粒子的混合方法。首先使用有试验数据的风洞模型以及数值模拟技术对混合方法进行验证,在此基础上研究了不同安装位置与工况下螺旋桨与机翼的气动干扰。结果表明:螺旋桨对轴向气流的加速以及滑流诱导的上洗和下洗效应使机翼气动力呈现出增升增阻的现象,机翼升阻比有所下降。较大的弦向间距以及较高的垂直安装位置在减缓机翼升阻比下降的同时也使得螺旋桨拉力有所减小。对于多个螺旋桨的气动干扰,不同的桨叶旋转方向导致机翼气动力不同的变化规律,当旋转方向与机翼翼尖涡反向时,螺旋桨滑流能够抑制翼尖涡的强度,提高机翼气动效率。
In view of the aerodynamic interference of the solar UAV propeller slipstream with the wing, the gas viscosity and compressibility under the low Reynolds number flow are considered. Based on the Riemann boundary conditions and the vorticity equivalence principle, A Hybrid Method of Unsteady Wing / Viscous Vortex Particles with Aerodynamic. Firstly, the wind tunnel model with the experimental data and the numerical simulation are used to verify the hybrid method. Based on this, the aerodynamic interference between the propeller and the wing under different installation positions and operating conditions is studied. The results show that the aerodynamic performance of the aerofoils increases and increases with the acceleration of the axial air flow and the effect of the upper wash and the lower wash of the slipstream induced by the propeller. The larger chordal spacing and the higher vertical mounting position reduce the propeller pull force while slowing down the wing lift-to-drag ratio. For the aerodynamic interference of multiple propellers, different blade rotation directions lead to different variation of wing aerodynamic forces. When the direction of rotation is opposite to the wing tip vortex, the propeller slipstream can suppress the strength of the wingtip vortex and improve the wing Pneumatic efficiency.