论文部分内容阅读
为了提高水下目标识别的识别率,降低水下目标特征提取的代价,提出了基于二进制粒子群优化(Discrete Binary Parti- cle Swarm Optimization,BPSO)的水下目标特征选择算法,并结合k近邻分类算法,对三类实测水下目标数据进行了最优特征集的选择及分类实验。实验结果表明该特征选择方法能有效降低水下目标的特征维数,选择出利于分类的特征子集,提高了水下目标识别的分类效果。为了说明方法对于其他模式识别问题的效果,另外选择了UCI机器学习数据库中的四组标准数据进行仿真分析。