论文部分内容阅读
针对传统的回归模型方法忽略标签信息,提出一种优化模型的判别性低秩回归模型方法.首先,通过预先设置模型目标矩阵,结合局部优化和全局优化的方式改进损失函数;然后利用增广拉格朗日方法求解目标函数,在求解函数的基础上得到新的模型目标矩阵,并通过线性回归模型计算最终的映射矩阵;最后通过实验验证了所提方法的有效性.实验结果表明,与其他几种低秩回归模型方法相比,提出算法的识别率最高.