论文部分内容阅读
针对传统是一近邻(k-NN)算法基于单一k值预测难以兼顾不同样本的个性,从而导致总体预测精度不够理想的问题,提出了一种组合Bk-NN预测方法.首先通过Boosting理论建立了个性化预测模型集,然后分别采用每个模型对样本进行独立预测,最后各模型预测值的加权和将作为最终预测结果.Bk-NN预测充分考虑了不同类型的样本可能要求不同的预测模型与之相适应的情况,有效降低了预测误差.与其他方法不同的是,Bk-NN预测对数据集的属性类型没有特殊要求.在标准数据集上的实验结果表明,Bk—NN预测精度比传统k—NN方法平