论文部分内容阅读
针对交通标志检测算法往往仅能对特定类标志检测或基于深度学习方法因训练样本少而造成"过拟合"高风险等问题,本文提出了一种基于伪样本正则化Faster R-CNN深度学习的标志检测算法。该算法首先通过训练数据集提供的标志和无标注的背景样本,提出了一种伪样本正则化策略。然后,通过深度学习模型中区域建议生成网络获取建议区域。最后,利用交替训练策略、共享CNN策略和联合训练策略、RPN网络和Fast R-CNN目标检测网络交替训练和联合训练,最终获取Faster R-CNN交通标志检测模型,实现了各类标志的检