改进的粒子群算法优化的特征选择方法

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:feijj2002_99
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
特征选择是数据挖掘中数据预处理的一个重要步骤,因此选择出最优的特征子集可有效地降低学习算法的数据维度和计算成本。采用二进制粒子群优化算法(binary particle swarm optimization algorithm,BPSO)来对特征选择过程进行优化。提出基于特征聚类信息进行种群初始化的策略,其中特征的聚类由社团划分算法完成,并根据划分后的信息,在初始化过程中减少信息冗余,提高初始化种群的质量。提出一种基于决策空间相似性的自适应局部搜索策略,其中粒子的相似性指数由粒子在决策空间中的相似性确定。
其他文献
目的探索检测cHLIgH和TCRβ基因重排的意义.方法对32例cHL病例石蜡存档切片进行了TCRβ及IgH基因FRⅢ区的重排检测.结果31.3%(10/32)出现IgH基因克隆重排单带,9.1%(3/32)出现
传统Takagi-Sugeno(T-S)模糊系统模型因模糊规则使用样本全部特征,导致模型的可解释性较差,冗余特征的存在还会导致模型的过拟合,降低模型的泛化性能。针对该问题,提出了一种