论文部分内容阅读
社交网络中影响最大化问题的研究一直是社交网络分析的重点之一,其技术在人们生活的很多领域中具有应用价值.针对现有影响最大化算法存在时间复杂度高、算法精度低和不稳定的问题,文中利用线性阈值模型的能够将影响力累积的特性,提出一种基于度和影响力的混合启发式算法—DIH(Degree and Influence Heuristic)算法.该算法综合考虑网络的传播特性和结构特性,基于线性阈值模型将整个影响最大化计算分为两个启发阶段:首先进行度折启发,在激活节点的同时将节点的影响力积累,然后进行影响力启发,将度折启发期