论文部分内容阅读
学习自动机(Learning automation,LA)是一种自适应决策器。其通过与一个随机环境不断交互学习从一个允许的动作集里选择最优的动作。在大多数传统的LA模型中,动作集总是被取作有限的。因此,对于连续参数学习问题,需要将动作空间离散化,并且学习的精度取决于离散化的粒度。本文提出一种新的连续动作集学习自动机(Continuous action-set learning automaton,CALA),其动作集为一个可变区间,同时按照均匀分布方式选择输出动作。学习算法利用来自环境的二值反馈信号对动作