论文部分内容阅读
为了克服现有机翼结构重量计算方法的局限性,提出一种基于多学科分析优化的机翼结构重量计算方法。以客机机翼为例,阐述整个计算流程。计算流程的关键步骤包括机翼外形和结构参数化建模、气动分析模型自动生成与外形优化、结构有限元模型的自动生成和结构优化。应用CAD软件CATIA的二次开发方法,实现机翼外形几何模型、结构布置几何模型和气动分析模型的自动生成;应用MSC.Patran的PCL编程技术,实现结构有限元模型的自动生成;应用等效刚度和等效强度方法,提高结构有限元模型自动生成的稳健性,缩短结构分析和优化的计算时间;应用多学科集成和优化技术,建立机翼结构重量预测的计算平台,实现整个计算过程的自动化。算例表明这种方法稳健、有效,可快速地分析机翼外形参数与结构重量之间的关系,分析不同展向载荷分布和不同选材方案对机翼结构重量的影响。
In order to overcome the limitations of existing wing structure weight calculation methods, a method of calculating wing structure weight based on multi-disciplinary analysis is proposed. Take the passenger aircraft wing as an example, explain the whole calculation process. The key steps in the calculation process include the wing shape and structure parametric modeling, the aerodynamic analysis model automatic generation and shape optimization, and the structural finite element model generation and structure optimization. The secondary development method of CAD software CATIA was used to realize the automatic generation of wing profile geometry, structure layout geometry and aerodynamic analysis model. The PCL programming technology of MSC.Patran was used to realize the automatic generation of structural finite element model. Stiffness and equivalent strength method to improve the robustness of automatic finite element model generation and shorten the analysis and optimization of structural calculation time; the application of multi-disciplinary integration and optimization technology to establish a platform for the calculation of the weight of the wing structure prediction to achieve the entire calculation process automation. The examples show that this method is robust, effective and can quickly analyze the relationship between the wing profile parameters and the structural weight, and analyze the influence of load distribution along different orientations and different material selection schemes on the wing structure weight.