Convergence of Stochastic Gradient Descent in Deep Neural Network

来源 :应用数学学报(英文版) | 被引量 : 0次 | 上传用户:libra_li
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Stochastic gradient descent(SGD)is one of the most common optimization algorithms used in pattern recognition and machine learning.This algorithm and its variants are the preferred algorithm while optimizing parameters of deep neural network for their advantages of low storage space requirement and fast computation speed.Previous studies on convergence of these algorithms were based on some traditional assump-tions in optimization problems.However,the deep neural network has its unique properties.Some assumptions are inappropriate in the actual optimization process of this kind of model.In this paper,we modify the assump-tions to make them more consistent with the actual optimization process of deep neural network.Based on new assumptions,we studied the convergence and convergence rate of SGD and its two common variant algorithms.In addition,we carried out numerical experiments with LeNet-5,a common network framework,on the data set MNIST to verify the rationality of our assumptions.
其他文献
11月16日,在湖南张家界水绕四门的博物馆里举行了摄影家陈复礼先生雕像的揭幕仪式,为了纪念陈复礼先生对张家界开发作出的历史性贡献。1981年,陈先生作为香港著名摄影家来到这里拍摄采风,当年即在香港《中国旅游》杂志上刊发了一组图文并茂的摄影专题,使这里的绝美山水广为世人所知。陈复礼这一次造访张家界是缘于另一位艺术大师吴冠中。2012年,吴先生的全身铜像竖立在了张家界国家森林公园广场,那是一段现代艺术
期刊
In this paper,we propose a new nonmonotone trust region Barzilai-Borwein(BB for short)method for solving unconstrained optimization problems.The proposed method
巴蜀东部万寿山上的万寿寨,是明末古战场,构成了川鄂交界处的险峻雄关,记录着刀光剑影年代发生的悲壮故事,被誉为"蜀道天险"。明末抗清女英雄秦良玉是我国历史上受到皇帝御笔题诗嘉奖的巾帼英雄,万寿寨古战场和她的功绩一起,名扬海内外,载入《明史》,万寿寨古战场也因此成为巴蜀闻名的文物古迹和游览胜地。古寨坐落在重庆市"革命老区"石柱土家族自治县三河镇蚕溪村境内,现为黄水国家森林公园历史文化景区,孤峰耸立,层
期刊