论文部分内容阅读
二叉树支持向量机(SVM)是一种针对多类问题的有效分类器,具有结构简单、训练快的特点,但二叉树SVM容易出现误差积累,且不能输出识别结果的置信度。文中设计了一种基于隶属度计算的二叉树SVM分类器,首先,该分类器利用方差和最小准则选择节点,将多类问题转化为偏二叉树SVM分类问题,避免了误差积累,然后,利用特征变换空间的类中心和类半径,计算出样本结果的置信度,使得二叉树SVM分类器能够输出模糊结果。将上述二叉树SVM分类器应用于弹道目标的RCS特征识别,仿真结果表明了该方法的有效性。