论文部分内容阅读
针对学习子句数量有限或相似度高导致历史信息有限、搜索树不平衡的问题,提出了基于动态奖惩的分支策略。首先,对每次单子句传播的变元进行惩罚,依据变元是否产生冲突和产生冲突的间隔,确立不同的惩罚函数;其次,在学习阶段,利用学习子句确定对构造冲突有益的变元,非线性增加它们的活跃度;最后,选择活跃度最大的变元作为新分支变元。在glucose3.0算法基础上,完成了改进的动态奖惩算法——AP7。实验结果表明,相比glucose3.0算法,AP7算法的剪枝率提高了14.2%~29.3%,少数算例剪枝率的提高可达5