Resolution limit of label-free far-field microscopy

来源 :AdvancedPhotonics | 被引量 : 0次 | 上传用户:wergsdf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The Abbe diffraction limit, which relates the maximum optical resolution to the numerical aperture of the lenses involved and the optical wavelength, is generally considered a practical limit that cannot be overcome with conventional imaging systems. However, it does not represent a fundamental limit to optical resolution, as demonstrated by several new imaging techniques that prove the possibility of finding the subwavelength information from the far field of an optical image. These include super-resolution fluorescence microscopy, imaging systems that use new data processing algorithms to obtain dramatically improved resolution, and the use of super-oscillating metamaterial lenses. This raises the key question of whether there is in fact a fundamental limit to the optical resolution, as opposed to practical limitations due to noise and imperfections, and if so then what it is. We derive the fundamental limit to the resolution of optical imaging and demonstrate that while a limit to the resolution of a fundamental nature does exist, contrary to the conventional wisdom it is neither exactly equal to nor necessarily close to Abbe’s estimate. Furthermore, our approach to imaging resolution, which combines the tools from the physics of wave phenomena and the methods of information theory, is general and can be extended beyond optical microscopy, e.g., to geophysical and ultrasound imaging.
其他文献
Monte Carlo simulation of light propagation in turbid medium has been studied for years. A number of software packages have been developed to handle with such issue. However, it is hard to compare these simulation packages, especially for tissues with com
期刊
体全息对小粒子记录及再现的影响关系到体全息材料在粒子场检测领域的应用前景,提出结合角谱传播理论与多光栅耦合波理论进行体全息图衍射分析的方法,并数值模拟了微米量级小粒子衍射光场的体全息记录与再现。数值分析结果表明体全息理论并不能像薄全息理论那样精确的再现出原始物光。其再现光场的角谱分布相对于原始光场存在高阶衰减,这使得再现光场成像后的图像边缘模糊,而且模糊程度还会随着粒子尺寸的下降逐渐上升。虽然这一现象为粒子边缘判读带来困难,但是再现图像的径向强度分布可为提高判断精度提供有益的参考。
太赫兹(Terahertz, THz)波通常是指位于微波和近红外之间的电磁波。 由于很多化学和生物分子的振动和转动模式正好都位于THz波段, 因此可以利用物质的这些“指纹谱”特性开展定性和定量分析研究。 目前用于THz光谱的定量分析主要有主成分回归(PCR)以及偏最小二乘回归(PLSR)等方法, 这些算法在建模时往往需要大量的样本进行监督学习, 模型精度对训练样本依赖性较高, 同时模型的外推性不易保证, 在样本量不足或者外推性要求较高的场合, 这些算法的使用会受到一定限制。 针对这些问题, 该研究提出一种