论文部分内容阅读
针对目前的图像分割算法无法考虑到低识别度图像下,对边缘细节和轮廓信息实现精确分割,提出一种基于遗传神经网络的低识别度图像分割算法。利用马尔科夫随机场(MRF),建立初始图像的分割概率模型,然后使用低通滤波器将低识别度图像分解成高频层和低频层,对包含高频层的图像信息进行傅里叶域上的预处理后,送入预先设计好的的遗传神经网络,经过参数寻优后获得最佳分割阈值,实现基于该模型的图像分割,实验结果表明该算法对低识别度图像实现了精确的分割,并且能更好地保留一些边缘信息,提高分割的准确性。