论文部分内容阅读
协同过滤算法(collaborativefiltering)目前较为成功地应用于个性化推荐系统中,但随着系统规模的扩大,面临很严重的稀疏性问题,制约了推荐效果。文中提出概念分层的方法对用户项矩阵进行改进,同时使用交易数据和点击流数据,将相似用户选择项与多层次关联规则推荐项相结合,在稀疏数据集上表现出较好的性能。