论文部分内容阅读
针对高实时性要求、低计算能力的小型嵌入式平台的应用背景,本文提出一种低时间复杂度、高鲁棒性的目标跟踪算法。首先,构建基于时空上下文贝叶斯概率模型的跟踪算法架构,然后提出低时间复杂度的灰度特征尺度池策略实现尺度自适应更新,最后利用基于置信图最大似然概率的目标模型更新策略来提高抗遮挡性能。利用基准数据集OTB2013对本文算法进行测试,跟踪精度为58.9%,成功率为51.3%,优于时间复杂度相近的STC(Spatio-Temporal Context)和CSK(Circulant Structure w