论文部分内容阅读
准确进行土地覆盖类型提取具有重要的实际应用价值,但是目前常用的分类数据较为单一,通常使用地物反射率数据或植被指数,较少使用定量遥感产品.为此,本文使用反照率等产品评价定量遥感产品在地物分类中的实际应用效果.提取定量遥感产品的年平均值、标准差等特征作为地物分类依据,运用随机森林分类方法建立中国地区土地覆盖分类的自学习模型,与仅用地物反射率和NDVI数据进行分类的结果进行比对.结果显示,定量遥感产品辅助下的随机森林模型宏观尺度土地覆盖分类方法的总体精度为89.8%,Kappa系数为0.86,比仅用反射率