论文部分内容阅读
当采用概率母函数将单传感器PHD滤波推广到多传感器情形时,针对计算繁琐,难于实现的问题,本文基于集中式融合系统的有序滤波思想,提出多传感器、多目标有序粒子PHD跟踪算法,该算法通过选取与各传感器相关的重要性密度函数,层层更新各传感器的采样粒子,达到多传感器多目标有序PHD跟踪。实验结果表明,当仅仅使用单传感器对多目标进行跟踪时,虚警概率较高时一些粒子会严重偏离原始目标轨迹,导致目标数目估计出现偏差,而采用多传感器多目标有序PHD跟踪可以有效减小多目标距离跟踪误差,提高跟踪精度。