CELLO: a longitudinal data analysis toolbox untangling cancer evolution

来源 :定量生物学(英文版) | 被引量 : 0次 | 上传用户:helen_00_00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The complex pattern of cancer evolution poses a huge challenge to precision oncology.Longitudinal sequencing of tumor samples allows us to monitor the dynamics of mutations that occurred during this clonal evolution process.Here,we present a versatile toolbox,namely CELLO (Cancer EvoLution for LOngitudinal data),accompanied with a step-by-step tutorial,to exemplify how to profile,analyze and visualize the dynamic change of somatic mutational landscape using longitudinal genomic sequencing data.Moreover,we customize the hypermutation detection module in CELLO to adapt targeted-DNA and whole-transcriptome sequencing data,and verify the extensive applicability of CELLO in published longitudinal datasets from brain,bladder and breast cancers.The entire tutorial and reusable programs in MATLAB,R and docker versions are open access at https://github.com/WangLabHKUST/CELLO.
其他文献
本试验以福建主栽品种K326为材料,研究了鸡粪有机肥和稻草还田互作对烤烟碳氮代谢、化学成分以及经济性状的影响,旨在探讨稻草和鸡粪有机肥不同处理调控烟叶品质的机理并寻求提
Background: The single-molecular sequencing (SMS) is under rapid development and generating increasingly long and accurate sequences.De novo assembly of genomes
当下学前美术示范出现两种极端的教学做法,一种是过分强调教师的示范作用;另一种是不进行示范。这两种做法不仅不利于学生美术的学习,而且阻碍学生身心健康的发展。因此,笔者